Continuing my previous blog here I will be showing how to calculate elastic constants of metals (illustrating gold as an example here). As stated earlier, 2 separate simulations will be performed in order to calculate the elastic constants.
Input script-Simulation 1 (for calculating C11,
C12 )
(Tensile loading condition)
atom_style atomic
boundary p p p
#FCC unit cell
variable a index 4.0782
lattice fcc ${a}
region myreg block 0 10 &
0 10 &
0 20
#Lattice units is used, which is the default
##in the argon example, we used box units.
create_box 1 myreg
create_atoms 1 region myreg
# Minimize using Embedded atom method potential for Al
pair_style eam/alloy
pair_coeff * * Au.eam.alloy Au
minimize 1e-25 1e-25 100000 100000
#=========================
#Total time is 10ps
#Total strain is 0.02
#Strain rate is 0.02 per 10 ps, which is 0.02x10^(11) strains per second
#2x10^9 strains per second!! Very high
#=========================
timestep 0.001
reset_timestep 0
compute str all pressure NULL virial
variable il equal lz
variable ezz equal (lz-${il})/${il}
fix defz all deform 1 z delta 0.0 1.63128 units box
dump dumpid all custom 100 deformtensile.lammpstrj id x y z
thermo_style custom step time c_str[1] c_str[2] c_str[3] c_str[4] c_str[5] c_str[6] v_ezz lx ly
thermo 100
run 10000
#end========================
Input script-Simulation 2 (for calculating C44 )
(Shear loading condition)
atom_style atomic
boundary p p p
#FCC unit cell
variable a equal 4.0782
#For shear deformation, we need a triclinic box
lattice custom ${a} a1 1.0 0.0 0.0 a2 0.0 1.0 0.0 a3 0.0 0.0 1.0 basis 0.0 0.0 0.0 basis 0.5 0.5 0.0 basis 0.5 0.0 0.5 basis 0.0 0.5 0.5
region myreg prism 0 10 &
0 10 &
0 10 &
0 0 0
#Lattice units is used, which is the default
##in the argon example, we used box units.
create_box 1 myreg
create_atoms 1 region myreg basis 1 1 basis 2 1 basis 3 1 basis 4 1
# Minimize using Embedded atom method potential for Al
pair_style eam/alloy
pair_coeff * * Au.eam.alloy Au
minimize 1e-25 1e-25 100000 100000
#=========================
#Total time is 10ps
#5° shear strain was given.
#=========================
timestep 0.001
reset_timestep 0
compute str all pressure NULL virial
variable ily equal ly
variable ilx equal lx
variable ilz equal lz
variable exy equal xy/${ily}
variable exz equal xz/${ilz}
variable eyz equal yz/${ilz}
variable exx equal (lx-${ilx})/${ilx}
variable eyy equal (ly-${ily})/${ily}
variable ezz equal (lz-${ily})/${ilz}
fix defxy all deform 1 xy delta 3.5679 units box
dump dumpid all custom 200 deformshear.lammpstrj id x y z
thermo_style custom step time c_str[1] c_str[2] c_str[3] c_str[4] c_str[5] c_str[6] v_exx v_eyy v_ezz v_exy v_exz v_eyz
thermo 100
run 10000
#end=======================
Visit LAMMPS Manual for detailed explantion of commands used.
Potential file used: Au.eam.alloy
Results
From simulation 1:
The slope of the above plot gives C11 value. So the value is 196.91 GPa.
The slope of the above plot gives C12 value. So the value is 155.97 GPa.
Values:
σ1=
σ2 (GPa) σ3 (GPa) v_ezz
0.026791706 0.026791706 0
0.059960138 0.067417747 0.0002
0.093415342 0.10842185 0.0004
0.12682225 0.14939341 0.0006
0.16018103 0.19033207 0.0008
0.19349187 0.23123846 0.001
0.22675479 0.27211226 0.0012
0.25996992 0.31295347 0.0014
0.29313723 0.35376247 0.0016
0.32625671 0.39453905 0.0018
0.3593283 0.43528247 0.002
0.39235223 0.475993 0.0022
0.42532932 0.5166719 0.0024
0.45825929 0.55731886 0.0026
0.4911424 0.5979336 0.0028
0.52397787 0.6385149 0.003
0.55676547 0.67906321 0.0032
0.5895054 0.71957877 0.0034
0.62219757 0.76006116 0.0036
0.65484255 0.80051051 0.0038
0.68744037 0.84092687 0.004
0.71999111 0.88131055 0.0042
0.75249497 0.92166156 0.0044
0.78495232 0.96197993 0.0046
0.81736289 1.0022655 0.0048
0.84972676 1.0425179 0.005
0.88204365 1.0827372 0.0052
0.91431336 1.122923 0.0054
0.94653609 1.1630757 0.0056
0.97871182 1.2031952 0.0058
1.010841 1.2432815 0.006
1.0429238 1.2833344 0.0062
1.0749602 1.3233543 0.0064
1.1069501 1.3633411 0.0066
1.1388934 1.4032945 0.0068
1.1707901 1.4432138 0.007
1.2026404 1.4830994 0.0072
1.2344443 1.5229519 0.0074
1.2662021 1.5627712 0.0076
1.2979138 1.6025569 0.0078
1.3295792 1.6423086 0.008
1.3611983 1.6820268 0.0082
1.3927711 1.7217116 0.0084
1.4242974 1.7613617 0.0086
1.4557776 1.8009775 0.0088
1.4872123 1.8405601 0.009
1.5186013 1.8801093 0.0092
1.5499447 1.9196246 0.0094
1.5812419 1.9591052 0.0096
1.6124932 1.9985515 0.0098
1.6436986 2.0379639 0.01
1.6748582 2.077342 0.0102
1.7059722 2.1166861 0.0104
1.7370406 2.1559957 0.0106
1.7680633 2.195271 0.0108
1.7990405 2.2345121 0.011
1.8299724 2.2737189 0.0112
1.8608588 2.3128913 0.0114
1.8916996 2.3520289 0.0116
1.9224948 2.3911313 0.0118
1.9532444 2.4301986 0.012
1.9839484 2.4692311 0.0122
2.0146073 2.5082293 0.0124
2.0452211 2.5471928 0.0126
2.07579 2.5861211 0.0128
2.106314 2.6250151 0.013
2.136793 2.6638744 0.0132
2.1672268 2.7026985 0.0134
2.1976152 2.7414867 0.0136
2.2279585 2.7802395 0.0138
2.2582567 2.8189567 0.014
2.2885099 2.8576384 0.0142
2.3187182 2.8962849 0.0144
2.3488817 2.9348959 0.0146
2.3790008 2.9734717 0.0148
2.4090755 3.0120125 0.015
2.4391058 3.0505183 0.0152
2.4690908 3.0889878 0.0154
2.4990304 3.1274205 0.0156
2.5289247 3.1658159 0.0158
2.5587741 3.2041754 0.016
2.5885801 3.2425004 0.0162
2.618342 3.2807897 0.0164
2.6480603 3.3190434 0.0166
2.6777338 3.3572605 0.0168
2.7073623 3.395441 0.017
2.7369459 3.4335848 0.0172
2.7664843 3.4716911 0.0174
2.7959793 3.5097615 0.0176
2.8254306 3.547796 0.0178
2.8548386 3.5857949 0.018
2.8842024 3.623757 0.0182
2.9135213 3.6616815 0.0184
2.9427955 3.6995685 0.0186
2.9720246 3.7374175 0.0188
3.0012102 3.77523 0.019
3.0303524 3.8130062 0.0192
3.0594511 3.850746 0.0194
3.0885061 3.8884487 0.0196
3.1175165 3.9261129 0.0198
3.1464828 3.9637397 0.02
From simulation 2:
The slope of the above plot gives C44 value. So the value is 51.077 GPa.
Values:
σ4 v_exy
4.27E-15 0
0.042230287 0.000874871
0.084888963 0.001749743
0.12754976 0.002624614
0.1702154 0.003499485
0.2128861 0.004374356
0.25556372 0.005249228
0.29825012 0.006124099
0.34094599 0.00699897
0.38365294 0.007873841
0.42637245 0.008748713
0.46910591 0.009623584
0.5118544 0.010498455
0.55462027 0.011373326
0.59740307 0.012248198
0.64020635 0.013123069
0.68303002 0.01399794
0.72587568 0.014872812
0.76874544 0.015747683
0.81163939 0.016622554
0.85456031 0.017497425
0.89750878 0.018372297
0.94048628 0.019247168
0.98349385 0.020122039
1.0265336 0.02099691
1.0696063 0.021871782
1.1127135 0.022746653
1.1558568 0.023621524
1.1990369 0.024496395
1.2422557 0.025371267
1.2855147 0.026246138
1.3288144 0.027121009
1.3721568 0.027995881
1.4155435 0.028870752
1.4589747 0.029745623
1.5024532 0.030620494
1.5459791 0.031495366
1.5895542 0.032370237
1.6331803 0.033245108
1.6768575 0.034119979
1.7205882 0.034994851
1.7643735 0.035869722
1.8082139 0.036744593
1.8521122 0.037619464
1.896068 0.038494336
1.9400836 0.039369207
1.9841605 0.040244078
2.0282989 0.04111895
2.0725011 0.041993821
2.1167681 0.042868692
2.1611005 0.043743563
2.2055008 0.044618435
2.2499691 0.045493306
2.2945071 0.046368177
2.3391164 0.047243048
2.3837974 0.04811792
2.4285522 0.048992791
2.4733817 0.049867662
2.5182866 0.050742533
2.563269 0.051617405
2.6083297 0.052492276
2.6534696 0.053367147
2.6986909 0.054242019
2.7439932 0.05511689
2.7893797 0.055991761
2.8348496 0.056866632
2.8804053 0.057741504
2.9260482 0.058616375
2.9717782 0.059491246
3.0175977 0.060366117
3.0635075 0.061240989
3.1095079 0.06211586
3.155602 0.062990731
3.2017892 0.063865602
3.2480708 0.064740474
3.2944493 0.065615345
3.3409242 0.066490216
3.3874976 0.067365088
3.4341711 0.068239959
3.4809439 0.06911483
3.5278193 0.069989701
3.5747973 0.070864573
3.6218788 0.071739444
3.669066 0.072614315
3.7163587 0.073489186
3.7637586 0.074364058
3.8112679 0.075238929
3.8588853 0.0761138
3.9066139 0.076988671
3.9544545 0.077863543
4.0024067 0.078738414
4.0504739 0.079613285
4.0986554 0.080488157
4.1469524 0.081363028
4.1953676 0.082237899
4.2438998 0.08311277
4.2925517 0.083987642
4.3413241 0.084862513
4.390217 0.085737384
4.4392328 0.086612255
4.4883724 0.087487127
Explanation
After calculating the C values, B, G, E are calculated using the below formula:
Bulk modulus (B) = (C11 + 2 C12)/
3
Shear modulus (G) = (C11 – C12 +
3 C44)/5
Young’s modulus (E) = (9 GB)/ (3 B + G)
Using the formula the values are calculated:
E= 108.23 GPa
G= 38.83 GPa
B= 169.61 GPa
E= 78 Gpa
G= 27 GPa
B= 220 GPa
As we see, there are deviations in values, but the values are comparable. This computational study will give us a general idea of how a material behaves. This is computationally very small system on which the study was conducted (with just 8000 atoms). A larger system can give even close results. Hope this blog is useful for you. Keep visiting the page for further updates!
how to give loading in fcc (1 1 1) orientation?!
ReplyDeleteIn fix deform command I have given xy plane since I wanted to apply force on xy plane. Instead of xy you can give what ever the direction you want to apply force. Hope this answers your question.
DeleteIf you have further questions you can contact me through email.
Thank you
Hello, Can this script will be useful for hcp crystal
ReplyDeleteHow we get the results? any output file?
ReplyDelete